
 1

Ninux Roma
The Routing Architecture
May, 2012 - Version 0

Authors

● ZioPRoTo - Saverio Proto
● Nino - Antonino Ciurleo
● maruscia - Mara Sorella
● Clauz - Claudio Pisa
● claudyus - Claudio Mignanti
● Hispanico - Marco Giuntini
● ordex - Antonio Quartulli
● Gubi - Alessandro Gubitosi
● G10h4ck - Gioacchino Mazzurco

Scope of this document
From 2003 to 2011 we run the Ninux Wireless Community network in Roma, in small
scale and with private IPv4 addressing. Exchanging traffic with the Internet was done
using NAT, and exploiting the user home ADSL lines.
In the very beginning we had a layer 2 network, then RIP routing, and finally since
2005 we started deploying the OLSR routing protocol.
Because we had a very simple network structure and running just a single routing
protocol, up to now we never needed a routing architecture.
In 2011 we started to deploy a new Ninux network in Rome. Dual stack IPv4 and
IPv6, and with BGP peerings to upstream providers.
Now the time has come to define a routing architecture.

 2

Table of Contents
Authors	 ..	 1	

Scope	 of	 this	 document	 ..	 1	

Table	 of	 Contents	 ..	 2	

Requirements	 ..	 3	

Glossary	 ...	 4	

Address	 Space	 ..	 5	
IPv4	 ..	 5	
IPv6	 ..	 5	
Conventions	 in	 Addressing	 ..	 6	

Network	 Topology	 ...	 7	
Mesh	 stub	 areas	 ...	 8	
Mesh	 transit	 areas	 ..	 9	

Routers	 specification	 ..	 11	
BGP	 routers	 ..	 11	
Export	 Policy	 ..	 12	
Import	 Policy	 ...	 13	

OLSR	 routers	 ..	 13	
Routing	 operation	 inside	 the	 OLSR	 router	 ..	 14	
Avoid	 ghost	 traffic	 to	 gateways	 ..	 14	
Avoid	 ADSL	 Blackholes	 ..	 14	

ADSL	 routers	 ..	 15	

NAT	 -‐	 Network	 Address	 Translation	 ..	 16	

VPN:	 OOB,	 Monitoring	 and	 Connection	 to	 other	 cities	 ..	 16	

Migration	 from	 legacy	 Ninux	 to	 this	 routing	 architecture	 ...	 17	

Conclusion	 ..	 18	

Appendix:	 OLSR	 router	 configuration	 template	 ..	 18	

Appendix:	 OLSR	 Troubleshooting	 ..	 18	

Appendix:	 BGP	 router	 configuration	 template	 ..	 18	

 3

Requirements
The Ninux network of Rome is designed to be dual stack and to fully support native
IPv6 and IPv4. Moreover we avoid tunneling in the core network to guarantee the
delivery to any Ninux site of the network a MTU of 1500 bytes, this way we never
have fragmented IP packets in the backbone.
All the destinations are fully routable within our autonomous system. We do not
make use of NAT inside the autonomous system.
Managing the IPv6 side is easier because we have to deal only with public
addresses and deliver the traffic towards external autonomous systems just to our
upstream providers.
The IPv4 requirements are more complex because we have a mixed public and
private address space.
We use at any site private or public IPv4 addresses, and in terms of IP reachability
we allow any of the following exchanges:

● any private IPv4 to any private IPv4
● any public IPv4 to any public IPv4
● any private IPv4 to any public IPv4
● any public1 IPv4 to any private IPv4

For what concerns the outgoing traffic towards other ASs we have as a requirement
to exploit our upstream providers where we have BGP peerings, and also the
bandwidth shared by Ninux members, who provide access to their home Internet
connections.

1 in this specific statement with “public” we mean a public IPv4 address belonging to the Ninux Autonomous
System, because it is obvious that our private IPv4 addresses cannot be routable from outside our AS.

 4

Glossary
● Ninux Node: a Ninux Node is a set of devices on a roof managed by a Ninux

member.
● Ninux Super Node: a Super Node is a Ninux Node that provides transit (i.e. is

not a leaf of the topology graph)
● Public Ninux IPv4: It is a public IPv4 assigned to the Ninux AS.
● Backbone: In this document we refer to backbone as the sets of links between

Ninux Super Nodes. These links are usually Point to Point (PtP) or Point to
Multi Point (PtMP), with high bandwidth capacity and directional antennas.

● In the Version 0 of the document you might find the Glossary is not complete

 5

Address Space
At the moment, Ninux has been given the autonomous system number 197835, as
stated in
https://stat.ripe.net/AS197835.
To better exploit the features of this architecture at least a /48 IPv6 network and a
/24 IPv4 public network are needed. However the network could be deployed also
with fewer resources.
For IPv4 any private IP address defined in the RFC 1918 can be used. However if
you plan to build a Ninux network in your city and you want to be able in the future to
connect via VPN to our services, we suggest to write to the Ninux mailing list to
define a subnetting pattern for your city that avoids collisions with the address space
in the rest of the country.

IPv4
In Ninux Roma we currently use a /24 public network and various private networks
from RFC 1918, however the architecture presented in this document is suitable for
any address space.
The radio interfaces of the backbone have an IPv4 address in the 172.16.0.0/162
private space. The third byte of this IP address is chosen to be close to the postal
code of the geographic address of the Ninux node.
So we define this address space: 172.16<.ZIPCODE>.x. Where x is allocated
sequentially by checking on our database which is the last IP address already
allocated.
The LAN interfaces use the 10.0.0.0/8 address space. Again usually the Ninux Node
obtains a /24 following this pattern: 10.<ZIPCODE>.x.0/24. The rules to follow this
pattern are the same for the backbone interfaces.
We have some legacy Ninux nodes that do not follow this scheme, and may use also
192.168.0.0/16 addresses. This is not a problem unless there is a IP address
collision.
To compute the <ZIPCODE> value, we start from the Italian zip code postal address,
that is a number of 5 digits, and we apply the following formula:
if zipcode is XXYYY
then compute (YYY mod 255 + XX) mod 255

IPv6
The Ninux Network in Rome uses the IPv6 address space 2001:4c00:893b::/48.
Every Ninux member allocates for the LAN at his place one or more /64 networks. It
is important to delegate an entire /64 to a Ninux Node because most IPv6 software
implementations expect the LAN to be a /64 subnet. By delegating a smaller IPv6

2 The RFC 1918 actually defines a wider address space, we use just a /16 to reserve IP addresses to
other Ninux cities.

 6

space you will run in problems when assigning dynamically IPv6 addresses to your
network hosts.
The OLSR protocol has a nice feature: because it was originally devised to support
the mobility of the nodes, the signalling works as long as there is a working layer 2
connection between two routers. Because the OLSR packets have a multicast
destination address, both the source IP address and the subnet mask of the OLSR
router are not important for the correct behavior of the signalling. This means that we
could have routers with a completely random 128bit sequence instead of a coherent
IP address and the OLSR protocol would be able to make its routing properly.
The radio interfaces of the backbone have IPv6 addresses inside this /64 network
2001:4c00:893b:1::/64
By default we use this convention:
2001:4c00:893b:1:<ZIPCODE>::X
Where <ZIPCODE> is the same value explained for IPv4 and X is a sequential
number picked up from our database. However because the IPv6 address space is
bigger than IPv4, we do not mandate to strictly use ZIPCODE so we have several
exceptions to this rule. The mandatory is that radio backbone interfaces MUST be in
the 2001:4c00:893b:1::/64 subnet.
In summary the only reserved /64 subnets are 2001:4c00:893b:1::/64 and
2001:4c00:893b:ffff::/643, so any other free /64 network can be choosen by a Ninux
member for his home LAN.

Conventions in Addressing
There are some conventions that we use to easily managing numbering point to
point links.

VPN address space:
The Ninux VPN as explained later is only IPv4. Due to ZIPCODE number 0 is not
used in Italy, we chose 10.0.1.X for VPN connection addressing.

GRE Tunnels Point to Point Links:
For full mesh iBGP tunnel we use, for IPv4, 10.0.3.0/24 subnetted in /30, one for
each tunnel. IPv6 tunnel address are /127 (rfc6164) subnets taken from
2001:4c00:893b:ffff::/64

3 Explained in next section

 7

Network Topology
In the following figure we show a simplified topology of the Ninux Network.
For the complete topology of the network of Rome you can check out the web site
http://map.ninux.org .
We show three BGP routers, as in the Ninux Network of Rome, however this
architecture works with any number of BGP routers.

OLSR routers, as we will explain more in deep later, are the devices that the
community members have on the roof of their houses. On the same roof there might
be more than one OLSR router, but at least one must be present to run a Ninux
Node. OLSR routers can be connected to other routers via both wireless and wired
links. Links are not mandatory to be point to point. In the case of wired links we have
an Ethernet segment, where all the routers that are connected will establish an
adjacency to all the others in the segment. In wireless links, even if we prefer to have
point to point links to reach better performances, we can have any kind of L2
configuration (AP-Sta or ad-hoc for wireless) and the routing protocol will take care
of establishing the router’s adjacencies.
In the figure we depict a cloud of routers, it means that these devices route traffic just
by being OLSR speakers.
Two Ninux nodes are represented in higher detail. The one in the left is a roof with
three routers on the top, and no Internet connection available in that site. The one in

 8

the right is a roof with two OLSR routers, where the Ninux member is also sharing
her ADSL bandwidth.

Mesh stub areas
The usual OLSR router has an interface connected to the user LAN, in a subnet with
some hosts that do not run the OLSR protocol. To announce the IP addresses of the
LAN in the OLSR protocol we use the HNA configuration setting in OLSR.
Of course the HNA configuration setting can be exploited to announce a subnetwork
that is not a normal LAN, but it is a mesh network where we run a L2 routing
protocol, for example B.A.T.M.A.N.-Advanced.

As we see in the figure there will be an edge router between the two domains that
speaks both the OLSR and the B.A.T.M.A.N.-Advanced routing protocol. This edge
router will announce all the IP addresses used in the batman-adv network with an
HNA setting.
Note that is not mandatory to have a single router speaking both protocols. The
setup will work also with an additional device connected to the HNA segment of the
OLSR router that speaks the B.A.T.M.A.N.-Advanced routing protocol and makes the
connection from the HNA domain and the batman cloud.
On the other “side” the edge router will run a DHCP server instance and will use it to
distribute addresses to all the batman-adv nodes belonging to the L2 mesh network
(the LAN). In this way, the nodes will directly exploit the OLSR edge router as default
gateway towards the rest of the network without caring about any L3 routing issue.

 9

Here it is easy to understand that the batman-adv mesh network is exactly behaving
like a normal LAN connected to an classic OLSR router.

Mesh transit areas
If the mesh network connects to the backbone in more points, then we don’t have a
mesh stub area anymore. Note that the mesh address space is announced to the
Ninux Backbone via HNA in both the edge routers. Moreover the two edge routers
will establish a OLSR adjacency that traverses some hops in the batman-adv mesh
network. This happens because OLSR is not aware of the batman-adv mesh
topology and about the number of hops it has to traverse, therefore the weight of this
“single OLSR-link” should be manually adjusted by the Ninux Members running this
part of the network.

For what concerns the batman-adv nodes, as for the stub area, they do not have any
knowledge about the L3 routing issue, therefore they will continue to use as default
gateway the edge router assigned by the DHCP protocol.
Depending on the Ninux members, all the edge routers could have their own DHCP
server up and running, therefore the batman-adv area would end up in having
multiple servers assigning DHCP addresses and default routes. To solve this issue,

 10

batman-adv implements a convenience feature called “Gateway Selection”4: with this
mechanism each and every broadcast DHCP request issued by any node in the area
is directly redirected to the best gateways in the area. If you enable this not standard
feature of batman-adv you have to make sure that every DHCP server is managing
an IPv4 range, and these ranges must be not overlapping. The best gateway is
chosen using the same metric used by batman-adv for the routing process so
ensuring that each node will pick the most reliable one. In this way each node will
contact only one of the DHCP servers that are present in the area and will use the
default route assigned by it. In a general scenario each GW running a DHCP server
will assign itself as default route for its clients.

4 http://www.open-mesh.org/wiki/batman-adv/Gateways

 11

Routers specification
This architecture assumes that all the routers in the Ninux network are Linux based
(running AirOS or OpenWRT systems) with a Kernel capable of managing multiple
routing tables.
It is by using multiple routing tables that we are able to build up a complex IPv4
routing to meet our requirements.
Note that the olsrd daemon is natively able to use multiple routing tables for its
operations. In particular olsrd will write all the hosts routes in a table and will write his
best default route into a different table. We’ll see later on how to exploit this feature.

BGP routers
The BGP routers in the proposed architecture are located only at the edge of the
autonomous system. The routers are connected to each other forming a full mesh
made by IP tunnels and iBGP is handled with a full mesh of peering.This kind of link
is implemented by GRE tunneling over ninux mesh network using OLSR routed
addresses. This configuration guarantees that if there is a working path between two
BGP nodes, their tunnel is up.
We do not expect the number of our BGP routers to grow too much, because we
place them only at the edge of the autonomous system. However this architecture
can be extended with more scalable iBGP schemes (for example a route reflector
cluster) if the number of BGP routers gets too big.
The BGP router must be Linux based, because we need to run the olsrd daemon on
the router to redistribute our IGP routes to BGP.
In our implementation we use Quagga version 0.99.21 with the “manet” patch5 and
the olsrd daemon version 0.6.3 (or later) with the quagga plugin.
Because the Ninux backbone is designed with redundant paths, it should never
happen that the Autonomous System becomes partitioned. If this happens
unpredictable routing decisions may be taken for what concerns the traffic to the
Internet.

5 https://dev.openwrt.org/browser/packages/net/quagga/patches/120-quagga_manet.patch or here
https://github.com/zioproto/quagga-manet

 12

Export Policy
The BGP router is however connected to the Ninux backbone with a single link, so
there is the necessity to handle the case where the BGP router is disconnected.

As we see in the figure, we want to handle the scenario in which the BGP router
loses its connectivity to its OLSR 2-hop neighbor because the wireless link is down.
In this case we need the BGP router to stop announcing upstream the public IPv4
and IPv6 routes of Ninux.
To do this we configure two static routes, one for IPv4 and one for IPv6, to route all
the public Ninux addresses to a next-hop that is the address of the 2-hop neighbor.
This static route is active and then redistributed in BGP only if there is a OLSR route
to correctly resolve the next-hop, that we configured as the OLSR 2-hop neighbor.
With this trick we achieve to have in quagga something similar to the route tracking
feature of the cisco routers.
Note that if a BGP router has multiple 2-hop neighbor this setup will still work adding
multiple next-hops for the static routes that we are defining.

 13

Import Policy
The minimal requirement is to receive from the upstream a default route via BGP.
However because we like to experiment we receive from the upstream a full routing
table.
Regarding the redistribution of the default route to the OLSR network, the BGP
routers announce in the OLSRd process (via HNA announces) two special prefixes
that are: 0.0.0.0/1 and 128.0.0.0/1. The sum of these two prefixes is all the IPv4
Internet, so why aren’t we just announcing the default route? We announce these
two more specific routes together with the default one because we want this
information to go into a particular routing table in all the others OLSR routers (more
later).
It is important also to distribute in OLSR the classical default route, addition to the
two /1 aggregates, because we will see later that this piece of information will be
stored in a specific table of the OLSR routers that we use only for the default.
The BGP routers use a hot potato (or early exit) policy. Once traffic is there we send
it on the upstream. In makes no sense to send the traffic to another BGP router
within the GRE tunnel, maybe 15 wireless hops away, just because of a better AS
path.
However, if for some special destination we have a policy to exit the Ninux network
from a specific upstream provider, remember that traffic routed with a route learnt via
BGP must always be routed into a GRE tunnel or to a upstream provider. This is
mandatory because the next-hop must be a BGP speaker to have a consistent
routing.

OLSR routers
This type of router is the most common in the Ninux Network. It runs the OLSR
routing protocol and has the following routing tables.

IPv6Table: IPv6 routing table, learnt via OLSR
RtTable: olsrd IPv4 routing table
RtTableDefault: IPv4 default route learnt via OLSR
RtTableManual: Routes via web interface applied by user

Please refer to this document for better comprehension of naming the tables:
http://olsr.org/git/?p=olsrd.git;a=blob;f=files/olsrd.conf.default.full

 14

Routing operation inside the OLSR router
The OLSR router is the key element of our routing architecture. The rules to choose
which will be the routing table where to process the traversing IP packet, form the
core part of all the network routing process.

If packet is IPv6: use IPv6Table
IPv4:
If destination is private: use RtTable
If destination is Ninux Public IPv4: use RtTable
If source is Ninux Public IPv4: use RtTable
If source is Transit6 Public IPv4: use RtTable
Anything else use RtTableManual and then
RtTableDefault

Avoid ghost traffic to gateways
What will happen if a host starts to generate packets to a destination that doesn’t
exist, that is in private address space, or in the Ninux public address space ?
This packets will follow the default route and will die into an Internet Gateway.
To avoid this useless traffic we insert some special static routes at the end of the
RtTable. This routes will match the aggregate of the private IPv4 space (RFC 1918)
and will match the aggregate of all the public IPv4 Ninux space. As a matter of fact if
the host or subnet do exist, there is always a more specific route that is matched in
the RtTable, this special routes at the end of the table have the effect of stopping
traffic towards not existent destinations that was traveling in the direction of the
default gateways. Practically speaking we are talking about adding these routes:

ip route add blackhole 10.0.0.0/8 table RtTable
ip route add blackhole 172.16.0.0/12 table RtTable
ip route add blackhole 192.168.0.0/16 table RtTable
ip route add blackhole 176.62.53.0/247 table RtTable

Avoid ADSL Blackholes
If the OLSR router sends traffic to a default gateway defined in RtTableManual, but
the ADSL connection is a blackhole, the traffic gets lost.
To prevent this situation the router announces the default via OLSR only if the
connection through the ADSL modem is working.
To be able to detect this situation we define a detection_address address and a
routing table detection_table so that:

● detection_table has always higher priority than the other tables
● detection_address is a public IPv4 address
● detection_address belongs to a host that has high availability

6 This rule is optional. It is needed just in case the Ninux AS gives transit to another AS towards an
upstream provider. It stays as a placeholder for the completeness of the architecture, but we will
probably never use it.
7 In this example 176.62.53.0/24 is the public IPv4 space of the Ninux AS

 15

● detection_address belongs to a host that is ICMP enabled
● detection_table contains an entry for detection_address so that it is always

routed through the ADSL line
Then we use olsrd dynamic Internet Gateway and our bash script (adsl_check):

● the olsrd dynamic Internet Gateway plugin is configured to announce the
default route only if detection_address is available

● adsl_check inserts the static route with gateway the ADSL modem as default
route in RtTableDefault if detection_address is available and deletes the same
static route if detection_address is not available

Note that more than one detection_address can be configured, as long as the above
characteristics apply.

ADSL routers

This is the home Internet Gateway of a Ninux member, if any.
There are a few requirements that ADSL routers in our specification should match:

1. Possibility to specify the IP address
2. Possibility to add static routes to a gateway connected on the LAN interface

Note that the router that is provided by some Internet Service Provider might not be
of use, i.e. the routers by Alice Telecom Italia have a fixed IP address 192.168.1.1
that cannot be changed.
Also the Fastweb ISP architecture may not be compliant with the Ninux ADSL router
requirements: addresses in the private IP address range have been provided to
customers (and the range itself is not configurable by the users).
In both these cases an intermediate device, the “home router”, which must have an
“ISP” and “Ninux” interfaces, implements a “double NAT” system were both ISP and
Ninux address space are masqueraded.
The traffic on the “home router” can be also monitored using compliant protocols
such as SNMP and can be used as VPN host, in conjunction with an olsrd instance
(see below).

 16

NAT - Network Address Translation
Apart from the situation in which a “double nat” device is needed to separate the
Ninux network from the provider’s private IP address space, there is only one
situation in which we have to use NAT in the Ninux network: when a IPv4 packet with
a private source address is going outside the Ninux Network. This can happen both
at the ADSL router or at the BGP router. A NAT must be properly configured to
handle this situation.

VPN: OOB, Monitoring and Connection to other
cities
The VPN setup regards only the IPv4 network. At the moment we make use of tinc-
vpn8.
The VPN Links are part of the OLSR domain, the weight of the links is altered with
the LinkQualMult setting of olsrd.conf to use VPN Links only if no other route to
the destination is available.
We deploy this VPN as a tool for troubleshooting and monitoring. The
troubleshooting part is in place in case several wireless backbone links begin to fail:
the AS will not be partitioned if there are VPN links that keep all the nodes connected
in the routing.
We do monitoring (traffic statistics and Nagios) with a single server for all the cities in
Italy. This server accesses the various cities exploiting the VPN links.
In this architecture VPN is meant for signalling (SNMP, Nagios checks) and
troubleshooting and never for carrying actual data traffic.

8 http://www.tinc-vpn.org

 17

Migration from legacy Ninux to this routing
architecture
What happens when we deploy this architecture? Do we have to reflash all the
routers at once with the new firmware?
The answer is no. The new OLSR routers are backward compatible with the legacy
OLSR routers that use a single routing table. When the network is mixed, the only
traffic that can have problems are IP packets with a Public Ninux source address. If
these packets are routed by mistake to ADSL lines by a legacy OLSR router, the
results are unpredictable, depending on the ADSL provider’s configuration.

 18

Conclusion

This is the very first version of this document where we describe the Ninux Routing
Architecture.
The deployment of this architecture should be complete by the end of 2012. We are
going to release future versions of this document during the roll out of the network,
adding templates for configuration files and fixing mistakes we find on the way. If you
want to get in contact with us you can send an e-mail to contatti@ninux.org.

Appendix: OLSR router configuration template
A template of olsrd.conf will be provided soon with the next release of this document.

Appendix: OLSR Troubleshooting
We expect txtinfo plugin to be accessible by anyone on our routers, on port 2006 for
IPv4 and on port 2007 for IPv6.
Using this tool we can access the OLSR routing table, links information etc etc, so
that any Ninux Member can perform troubleshooting on the backbone without need
of passwords.
https://github.com/ninuxorg/misc_tools/blob/master/ninux-lg.py

Appendix: BGP router configuration template
First of all you have to tune the Linux Kernel parameters to store enough routes for a
full routing table of the Internet.

echo 32768 >/proc/sys/net/ipv6/route/max_size
echo 8192 >/proc/sys/net/ipv6/route/gc_thresh

sysctl -w net.core.wmem_default=1048576
sysctl -w net.core.wmem_max=1048576

Download quagga sources and apply this patch:
https://dev.openwrt.org/browser/packages/net/quagga/patches/120-
quagga_manet.patch

Or use our git repository:
https://github.com/zioproto/quagga-manet.git

Templates files of zebra.conf and bgpd.conf will also be provided with the next
release of this document.

